

Re-Carbonizing Row Crop Ag Lands:

Evidence-based management strategies to increase soil carbon and promote financial resilience for farmers.

2019 NRCS Midwest Climate Hub Liaison: Justin Mount

Concepts and Considerations:

- View observed and predicted rainfall variability
- > Establish attributes and functions of productive soils
- Explain Soil Condition Index (SCI)
- ➤ Integrated Erosion Tool (IET) conservation planning workflows
- Discuss IET Report and intended use

Observed Change in Total Annual Precipitation Falling in the Heaviest 1% of Events

Projected Change in Total Annual Precipitation Falling in the Heaviest 1% of Events by Late 21st Century

Soil Water Reserves for Crops

Assuming an average rate of crop water use during the grain-filling period for corn Hudson, 1994

Crop System considerations resulting from intensified and varied precipitation events

- Precipitation variability:
 - ✓ spatially (locality)
 - ✓ temporally > precip intensity in off-season
 - ✓ More weather events resulting in excessive soil loss
- Increased nutrient loss likelihood
 - ✓ Leaching
 - ✓ Runoff
 - ✓ Surface Manure applications moving offsite
 - ✓ Atmospheric release (denitrification)

- Crop protection chemicals:
 - √ efficacy adjustments
 - ✓ movement and impacts offsite
- Increased need for drainage (surface and subsurface)
- Field days reduced:
 - ✓ Field pre-plant preparations
 - ✓ Planting
 - Crop nutrient and protection operations
 - ✓ Harvest
 - ✓ Cover crop planting

Average Loss of Soil Carbon in Corn Belt (mollisol)

Benefits of Soil Carbon

Healthy soils have a major role to play

helping boost the internal regulatory mechanisms of a system

Why should farmers and conservationists be concerned with re-carbonizing annual row crop lands?

IET models both Wind and Water induced erosion

Integrated Erosion Tool (IET)

IET is a digital map-based interface designed to supply site specific and crop management data to current NRCS crop system models.

WEPP = <u>**W**</u>ater <u>**E**</u>rosion <u>**P**</u>rediction <u>**P**</u>roject

WEPS = Wind Erosion Prediction System

CR LMOD = Conservation ResourcesLand Management Operations Database

Soil Conditioning Index (SCI) formula is:

$$(OM \times 0.4) + (FO \times 0.4) + (ER \times 0.2) = SCI$$

- OM accounts for organic material returned to and grown in the soil as a function of biomass produced
- **■** <u>FO</u> represents <u>field operation effects</u>
- <u>ER</u> is the sorting and removal of surface soil material by sheet, rill and/or wind <u>er</u>osion

Rotation Soil Conditioning Index (SCI): 1.1
SCI Organic Matter (OM) Factor: 1.7
SCI Field Operation (FO) Factor: 0.9
SCI Erosion (ER) Factor: 0.7

Soil Conditioning Index (SCI)

Organic Matter:

Biomass and residue additions:

- ✓ Plant roots
- ✓ Crop residue
- ✓ Manure
- ✓ Mulch

Biomass and residue removals:

- ✓ Grain removal
- ✓ Silage production
- ✓ Baling
- ✓ Grazing
- ✓ Burning

Field Operations:

- ✓ Ground / Arial
- ✓ Inversion tillage
- ✓ Horizontal tillage
- √ Vertical tillage
- ✓ Planting operations
- ✓ Nutrient applications
- ✓ Row Cultivation
- ✓ Land leveling
- ✓ Etc...

Water-induced erosion:

- ✓ Sheet erosion
- ✓ Rill erosion

Wind-induced erosion:

- ✓ Saltation,
- ✓ Creep (wind)

Monitor fields for Ephemeral and Gully Erosion.

Soil Conditioning Index (SCI) – crop management goals

IET directly assesses seven NRCS resource concerns:

- √ Water-induced Erosion sheet & rill
- √ Wind-induced Erosion saltation, suspension and creep
- ✓ Soil Quality organic matter depletion
- ✓ Water Quality & Quantity sediment delivery, runoff, evaporation, transpiration
- ✓ Energy field operations
- ✓ Air Quality particulate matter, objectionable odors, greenhouse gas precursors
- ✓ Wildlife Habitat surface residue, stem height

Integrated Erosion Tool (IET)

- **○** Anyone with ArcMap is able to use IET
- Working towards deploying a publicly available and secure web interface for IET

Purposes of IET:

Identify site factors:

- Soil
- Slope steepness
- Slope length
- Aspect
- Field shape and orientation (wind erosion)
- Barriers (wind erosion)

Document crop system management:

- Sequence and timing of field operations and crops grown
- Residue additions
- Yield for each crop
- Alternative System formulation and evaluation
- Planned system identified

IET Workflow:

Area of Analysis has been identified on digital map.

- 1. Select correct soil.
- 2. Identify slope length and slope steepness.
- 3. Select field shape and set orientation.
- 4. Define timing of field operations and crop yields.
- 5. Run model simulations.
- 6. Analyze graphs (as needed)
- 7. Print planning summary
- 8. Create IET Report.

Conservation Conversation

Engage Farmer with IET outputs to demonstrate crop system benefits of strongly positive SCI values.

Date	Interval End	Operation	Сгор	Residue		Residue (Ib/ac)	Yield	Yield Unit	Row/R Dir	lidge			
05-10-20		Sprayer, pre-emergence 🔻 🕦		weed residue;	0-3 mo 🔻	50			0				
05-11-20		Cultivator, field 6-12 in sweep 🔻 🕦							0				
05-12-20		Planter, double disk opnr	Soybean, grain				70	bu/ac	0				
06-07-20		Sprayer, post emergence 🔻 🛈		weed residue;	0-3 mo 🔻	50			0				
08-01-20		Sprayer, post emerge, insectic 🗸 🕦							0				
10-15-20		Harvest, killing crop 20pct sta ♥							0				
11-01-20		Fert applic. surface broadcast 🗸 🕦	Crop System Management Editor.										
04-15-21		Coulter caddy, fluted coulters 🔻 🕦	Ability to model over 100 crops.										
05-01-21		Sprayer, pre-emergence 🔻 🛈							0				
05-01-21		Planter, double disk opnr	Com, grain, seed				220	bu/ac	0				
06-02-21		Fert applic. side-dress, liquid 🔻 🕦							0				
06-07-21		Sprayer, post emergence 🔻 🛈		Crop Year S	TIR Information		İ	- 0	×				
10-10-21		Harvest, killing crop 50pct sta ♥		Crop rear s	THE INITIAL COLUMN								
10-15-21		Fert. applic. anhyd knife 30 in 🔻 🕦		Number	Crop Name	STIR	Start Date	End Date					
10-16-21		Chisel plow, coulter, st. pts., c ♥		1	Corn, grain, seed	128	5/26/2018	10/20/2020)				
11-01-21		Fert applic. surface broadcast 🗸 🕦		2	Soybean, grain	7	10/21/2020	10/10/2021					
04-15-22		Cultivator, field 6-12 in sweep 🔻 🕦		3	Wheat, winter, grain		10/11/2021	7/1/2022					
05-01-22		Sprayer, post emergence, fert 🗸 🕦		4	Alfalfa, hay	117	7/2/2022	5/25/2023					
05-05-22		Planter, double disk opnr	Com, grain, seed				205	bu/ac	0				
06-02-22		Fert applic. side-dress, liquid 🔻 🕦							0				
06-07-22		Sprayer, post emergence (i)		weed residue;	0-3 mo 🔻	50			0				

Annual Segment Statistics for 100 years

10

15

Average

20

30

Rotation Cycles

Cycle Average 90% Confidence

35

200 £ 175

150

125 100

> 75 50 25

Model Output	Mean	Median	Standard Deviation	Coef. Of Variation	Min	Max
Precipitation	41	41	6.4	0.2	27	63
Soil Loss	9.5	8.3	6.8	0.7	0.05	42
Sediment delivery	1.4	1.2	1	0.7	0.007	6.3
Irrigation	0	0	0	0	0	0
Runoff	7.5	7. <mark>1</mark>	3.4	0.5	1.2	20
Plant Transpiration	17	17	3.7	0.2	11	23
Soil Evaporation	13	13	2	0.1	8.3	18
	Precipitation Soil Loss Sediment delivery Irrigation Runoff Plant Transpiration	Precipitation 41 Soil Loss 9.5 Sediment delivery 1.4 Irrigation 0 Runoff 7.5 Plant Transpiration 17	Precipitation 41 41 Soil Loss 9.5 8.3 Sediment delivery 1.4 1.2 Irrigation 0 0 Runoff 7.5 7.1 Plant Transpiration 17 17	Precipitation 41 41 6.4 Soil Loss 9.5 8.3 6.8 Sediment delivery 1.4 1.2 1 Irrigation 0 0 0 Runoff 7.5 7.1 3.4 Plant Transpiration 17 17 3.7	Precipitation 41 41 6.4 0.2 Soil Loss 9.5 3.3 6.8 0.7 Sediment delivery 1.4 1.2 1 0.7 Irrigation 0 0 0 0 Runoff 7.5 7.1 3.4 0.5 Plant Transpiration 17 17 3.7 0.2	Precipitation 41 41 6.4 0.2 27 Soil Loss 9.5 8.3 6.8 0.7 0.05 Sediment delivery 1.4 1.2 1 0.7 0.007 Irrigation 0 0 0 0 0 Runoff 7.5 7.1 3.4 0.5 1.2 Plant Transpiration 17 17 3.7 0.2 11

Annual Soil Tillage Intensity Rating (STIR): 11

Air Particulates (PM10): 0 ton / ac / yr

Average Annual Fuel Use: 4 gal / ac / yr

Primary takeaways for SCI plus IET use and results interpretation:

- ✓ Quickly document crop systems for a defined location.
- ✓ Lower STIR = > SCI = more soil carbon > farm profit potential.
- ✓ Lower total erosion > SCI = better field conditions more often.
- ✓ More OM additions results in an improving SCI trend.
- ✓ Providing living roots throughout the entire year equates to better soil health
- ✓ SCI drives foundational soil health and solidifies a base for soil and enhance its production potential.
- ✓ IET model results are field specific and affected by interrelationships between multiple factors and variables.
- ✓ At this time, IET is <u>unable</u> to account for ephemeral and gully erosion

Economic incentives and financial resiliency benefits will encourage annual row crops farmers to prioritize increasing soil carbon.

Short term

Financial assistance provided by 2018 Farmbill programs such as:

- EQIP = Environmental Quality Incentives Program
- CSP = Conservation Stewardship Program
- RCPP = Regional Conservation Partnership Program

Long term

- ✓ Reduced crop yield variability
- ✓ Increased in plant available water
- ✓ Soil rewetting ability is magnified to capture more water during intense rainfall events
- ✓ Cleaner and fewer runoff events healthy soil absorbs and cleans water
- ✓ Improved cycling of primary, secondary and micro nutrients
- ✓ More days open for ground engaging field activities
- ✓ Greater financial resiliency and profit stability
- ✓ Carbon Market(s), existing and emerging, participation more lucrative

IET & SCI – application to Climate Hubs

- ✓ IET models and creates reports for scores of annual and perennial cash crop systems.
- ✓ IET can be used by the public (requires ArcMap 10.3 or 10.5).
- ✓ Business Goal = Deploy a publicly available and secure web interface for IET.
- How much is SCI, as a foundational soil metric, a part of Climate Hub discussions?
- MCH will use IET to explain SCI to promote engagement with Certified Crop Advisors (CCAs) by offering Continuing Education Units (CEUs).
- Accelerate adoption of cover crops through technology transfer, include Ag Retailers and frontline agronomists.
- Promote the value of soil carbon (SCI) as a financial resiliency toolset for crop farmers.
- ❖ Is this SCI & IET presentation able to support your Climate Hub outreach efforts?

- **□** Comments
- **☐** Observations
- Questions
- **□** Suggestions
- **☐** Constructive feedback

