

NRCS provides America's farmers and ranchers with financial and technical assistance to voluntarily put conservation on the ground, not only helping the environment but agricultural operations, too.

www.wi.nrcs.usda.gov

The Northern Institute of Applied Climate Science (NIACS) has been designed as a collaborative effort among the Forest Service, universities, conservation organizations, and forest industry to provide information on managing forests for climate change adaptation and enhanced carbon sequestration.

www.niacs.org

January 2020
USDA is an equal opportunity provider, employer and lender.

United States Department of Agriculture

YOUR WETLANDS AND A CHANGING CLIMATE

Many landowners have noticed visible impacts to their land with recent changes in our climate¹. Changes in land use and cover have made the functions and values of wetlands and riparian areas even more critical to store and filter water. The USDA's Northern Forests Climate Hub and Northern Institute of Applied Climate Science have identified tools and approaches² to help landowners adapt to climate change and restore desired hydrologic function on their land. The conservation programs offered by the USDA Natural Resources Conservation Service (NRCS) in Wisconsin can help private landowners achieve these goals through technical and financial assistance. Below are some examples of how adaptation strategies and NRCS programs can help you steward your wetland resources and prepare for climate change impacts.

HOW IS CLIMATE CHANGE IMPACTING WETLANDS?

For a full description of climate change impacts on Wisconsin wetlands, view the Climate Explorer Tool at: https://adaptationworkbook.org/explore-impacts.

TEMPERATURE INCREASES

Temperatures have already warmed by 2 ° F in northern Wisconsin over the past century and are projected to increase by another 3–9° F by the end of the century. Winters have warmed about twice as much as other seasons. This affects snowpack depth and duration, rates of evaporation and evapotranspiration, length of growing season, and drought stress. This means a shorter period of time for conducting management operations in forested wetlands, as well as changes in groundwater recharge and soil infiltration rates.

PRECIPITATION CHANGES

Mean annual precipitation in northern Wisconsin is projected to increase 1–3 inches by the end of the century. Most of the increases are projected to occur as extreme precipitation events, with longer periods of drought in between. Northern Wisconsin has already experienced multiple extreme rainstorms in the past few years. Heavy rainfall has significant impacts on soil moisture, depth of snowpack, frozen ground duration, flooding, and surface runoff.

CHANGING HYDROLOGY

Intense rainstorms are happening much more frequently in recent decades. Flooding and erosion from heavy rainfall have severe consequences for ecosystems, infrastructure, and local communities. Longer growing seasons also mean that the timing of snowmelt, runoff, and peak streamflow will be earlier in the year. Peak flow amounts in winter and spring could more than double, depending on ground conditions, timing, and amount of rainfall. Soil infiltration and erosion rates could change as the duration and timing of ground thaw and precipitation changes. All these things could mean either less water on your land or more, depending on where you live and how climate change impacts continue to unfold.

WHAT CAN I DO?

Whether you are concerned about climate change impacts or are just interested in what you can do to keep your wetlands healthy and productive, NRCS has programs that can provide the technical and financial assistance to help you achieve your goals and objectives.

AGRICULTURAL CONSERVATION EASEMENT PROGRAM (ACEP)

Provides financial and technical assistance to help conserve agricultural lands, wetlands, and their related benefits.

CONSERVATION STEWARDSHIP PROGRAM (CSP)

Helps landowners, land trusts, tribes, and other entities protect, restore, and enhance wetlands, grasslands, and working farms and ranches through conservation easements.

ENVIRONMENTAL QUALITY INCENTIVES PROGRAM (EQIP)

Provides technical and financial help to landowners for conservation practices that protect soil and water quality.

WHERE DO I START?

After applying for a specific program, you'll start with a CONSERVATION PLAN, which will help you:

- Identify your GOALS and OBJECTIVES,
- consider how climate change will affect your land, and
- select adaptation strategies and conservation practices to achieve your GOALS.

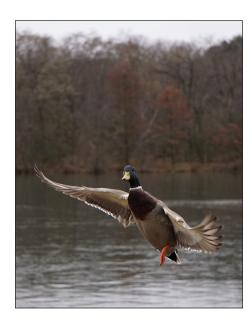
EXAMPLES:

OBJECTIVE: CREATE OR RESTORE ADAPTED PLANT COMMUNITIES

ADAPTATION APPROACHES: Enhance and maintain species diversity; favor and restore native species and genotypes adapted to future conditions.

CONSERVATION PRACTICES: Riparian Forest Buffer, Wetland Restoration

Wetlands and riparian areas can be critical habitat for many wildlife species and provide beneficial ecosystem services when they are functioning properly. These practices can help you provide habitat while maintaining beneficial riparian or wetland ecological processes and hydrological functions, which will increase your land's resiliency to climate change impacts. Increasing the diversity and cover of native woody and herbaceous species within a buffer zone along a river, stream, pond, lake, or wetland can help control invasive species, improve water quality, and improve habitat for fish and waterbirds. Amphibians and reptiles have small home ranges and depend on a diversity of wetland habitats and hydrologic periods available in relatively close proximity. Finding a way to maintain tree cover in forested lowland areas after losing ash trees to Emerald ash borer (EAB) will be of special importance to many landowners. These practices can be combined with other upland practices (i.e. prescribed grazing) to create a diversity of habitat types that can increase benefits.



OBJECTIVE: IMPROVE HYDROLOGIC FUNCTION

ADAPTATION APPROACHES: Maintain and enhance infiltration and water storage; restore stream channel form and function.

CONSERVATION PRACTICES: Wetland Creation, Wetland Enhancement, Constructed Wetland, Stream Habitat Improvement and Management

Hydrologic function can range from intercepting precipitation and surface runoff to filtering pollutants and excess nutrients out of the water. Maintaining appropriate temperature and oxygen levels for fish and providing appropriate ponded water for waterbirds, amphibians, and reptiles to feed and nest are important parts to those functions. The work involved to either create or restore these functions on your land can include creating appropriate microtopography and vegetation, installing water control structures , or controlling erosion with structural treatments. The goal is to minimize land that offers little to no opportunities for rainwater infiltration or that accelerates the movement of water across the land. Removing legacy sediments, amending compacted soils, or providing structures that stabilize streambanks and reconnect the floodplain to incised channels can decrease soil erosion and increase water quality.

OBJECTIVE: FACILITATE WILDLIFE USAGE

ADAPTATION APPROACHES: Reroute or relocate infrastructure; design and manage enhanced and created wetlands to accommodate changes in hydrologic variability.

CONSERVATION PRACTICES: Aquatic Organism Passage, Streambank and Shoreline Protection, Tree and Shrub Establishment

Critical functions of wetlands and riparian areas include providing food, nesting, brood rearing, and water sources for terrestrial and aquatic organisms. Sometimes new habitat creation is needed, or habitat needs to be protected from severe altering disturbances, which could require the removal or modification of barriers that are restricting water flow or wildlife access. This can involve modifications of stream design or channel form that are obstructing fish passage or increasing predation pressure or are eroding due to increasing frequencies in high intensity storm events. As climate change continues to alter precipitation patterns, land owners may rely upon water control structures, culverts, filter strips, and other means to either provide passageways and corridors for wildlife, retain more water on the land, or control the volume and amount of water running off the land.

OTHER RESOURCES AVAILABLE

Conservation programs, practices, and easements are available through the NRCS. Visit your local USDA Service Center or www.wi.nrcs.usda.gov for more information. More adaptation strategies and approaches are available for wetlands and other topics at the Climate Change Response Framework website: https://forestadaptation.org/adapt.

CITATIONS

- 1. Janowiak, Maria K et al, 2014. Forest ecosystem vulnerability assessment and synthesis for northern Wisconsin and western Upper Michigan: a report from the Northwoods Climate Change Response Framework project. Gen. Tech. Rep. NRS-136. Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northern Research Station. 247 p. https://doi.org/10.2737/NRS-GTR-136.
- 2. Swanston et al, 2016. Forest Adaptation Resources: climate change tools and approaches for land managers, 2nd edition. https://www.treesearch.fs.fed.us/pubs/52760, https://www.forestadaptation.org/adapt/adaptation-strategies.